Câu hỏi: Cho 3 vecto \(\overrightarrow a = \left( {1;2;1} \right);\)\(\overrightarrow b = \left( { - 1;1;2} \right)\) và \(\overrightarrow c = \left( {x;3x;x + 2} \right)\) . Tìm \(x\) để 3 vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
A. 2
B. -1
C. -2
D. 1
Câu 1: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
18/11/2021 1 Lượt xem
Câu 2: Cho 3 điểm \(M(0;1;0),N(0;1; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là
A. \(Q = \left( { - 2; - 3;4} \right)\)
B. \(Q = \left( {2;3;4} \right)\)
C. \(Q = \left( {3;4;2} \right)\)
D. \(Q = \left( { - 2; - 3; - 4} \right)\)
18/11/2021 2 Lượt xem
Câu 3: Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\) , \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì k bằng
A. \( - \dfrac{6}{{45}}.\)
B. \(\dfrac{{45}}{6}.\)
C. \(\dfrac{6}{{45}}.\)
D. \( - \dfrac{{45}}{6}.\)
18/11/2021 2 Lượt xem
Câu 4: Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \) .
A. \(I = {e^{\dfrac{\pi }{2}}} + 2\)
B. \(I = {e^{\dfrac{\pi }{2}}} + 1\)
C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)
D. \(I = {e^{\dfrac{\pi }{2}}}\)
18/11/2021 2 Lượt xem
Câu 5: Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1) = 20. Tính tổng a + b + c + d.
A. 46
B. 44
C. 36
D. 54
18/11/2021 2 Lượt xem
Câu 6: Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)
B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).
C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).
D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 499
- 0
- 40
-
44 người đang thi
- 535
- 13
- 40
-
80 người đang thi
- 459
- 3
- 30
-
13 người đang thi
- 436
- 3
- 30
-
18 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận