Câu hỏi: Biết F(x) là một nguyên hàm của hàm số \(f(x)=\frac{x}{\sqrt{8-x^{2}}}\) thoả mãn \(F(2)=0\) . Khi đó phương trình F(x)=x có nghiệm là

237 Lượt xem
18/11/2021
3.9 15 Đánh giá

A. x = 1

B. \(x=1-\sqrt{3}\)

C. x = -1

D. x = 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong không gian Oxyz , cho điểm A(1;2;-1) và mặt phẳng \((P): x-y+2 z-3=0\) . Đường thẳng d đi qua A và vuông góc với mặt phẳng (P) có phương trình là

A. \(d: \frac{x-1}{1}=\frac{2-y}{1}=\frac{z+1}{2}\)

B. \(d: \frac{x+1}{1}=\frac{y+2}{-1}=\frac{z-1}{2}\)

C. \(d: \frac{x-1}{1}=\frac{y-2}{1}=\frac{z+1}{2}\)

D. \(d: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 2: Trong các khẳng định dưới đây, khẳng định nào sai? 

A. \(\int\limits_{0}^{1} \sin (1-x) d x=\int\limits_{0}^{1} \sin x d x\)

B. \(\int\limits_{0}^{1}(1+x)^{x} d x=0\)

C. \(\int\limits_{0}^{\pi} \sin \frac{x}{2} d x=2 \int\limits_{0}^{\pi / 2} \sin x d x\)

D. \(\int\limits_{-1}^{1} x^{2017}(1+x) d x=\frac{2}{2019}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Tích phân \(\int_{0}^{\pi} x \cos \left(x+\frac{\pi}{4}\right) d x\) có giá trị bằng

A. \(\frac{(\pi-2) \sqrt{2}}{2}\)

B. \(-\frac{(\pi-2) \sqrt{2}}{2}\)

C. \(\frac{(\pi+2) \sqrt{2}}{2}\)

D. \(-\frac{(\pi+2) \sqrt{2}}{2}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Hoàng Văn Thụ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh