Câu hỏi:

Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

114 Lượt xem
05/11/2021
3.7 9 Đánh giá

A. - 5x - 3y + 3z - 14 = 0

B. - 10x - 6y + 6z + 15 = 0

C. - 10x - 6y + 6z - 15 = 0

D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Tính đạo hàm của hàm số \(y = x{e^{2{\rm{x}} + 1}}\)

A. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}} + 1}}\)

B. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}}}}\)

C. \(y' = 2{e^{2x + 1}}\)

D. \(y' = {e^{2x + 1}}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 3:

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):3x - y + 2z - 7 = 0\). Vectơ nào sau đây là một vectơ pháp tuyến của \((\alpha)\)

A. \(\overrightarrow n = \left( {3; - 1;2} \right)\)

B. \(\overrightarrow n = \left( {3;1;2} \right)\)

C. \(\overrightarrow n = \left( {3;2; - 7} \right)\)

D. \(\overrightarrow n = \left( { - 3;1;2} \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 4:

Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây

A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)

C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh