Câu hỏi:
Tìm tập xác định của hàm số \(y = {\log _3}\dfrac{{3 - x}}{{x + 2}}\)
A. \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\)
B. \({\rm{D}} = \left( { - 2;3} \right)\)
C. \(D = \left( { - \infty ;2} \right) \cup \left[ {3; + \infty } \right)\)
D. \({\rm{D}} = \left( { - \infty ;2} \right) \cup \left( {3; + \infty } \right)\)
Câu 1: Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
A. \({e^2} + e - 4\)
B. \({e^4} - e\)
C. \({e^4} - e - 4\)
D. \({e^4} + e\)
05/11/2021 7 Lượt xem
Câu 2: Cho hình lăng trụ đứng có diện tích đáy là \(3{{\rm{a}}^2}\), độ dài cạnh bên là 3a. Thể tích khối lăng trụ này bằng
A. \(6{{\rm{a}}^3}\)
B. \(18{{\rm{a}}^3}\)
C. \(9{{\rm{a}}^3}\)
D. \(3{{\rm{a}}^3}\)
05/11/2021 8 Lượt xem
Câu 3: Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
A. \(A'\left( {3;7} \right)\)
B. \(A'\left( {3;1} \right)\)
C. \(A'\left( {4;7} \right)\)
D. \(A'\left( {1;6} \right)\)
05/11/2021 7 Lượt xem
Câu 4: Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( { - 10;1} \right)\) và \(M'\left( {3;8} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v \) biến điểm \(M\) thành điểm \(M'\). Khi đó vectơ \(\overrightarrow v \) có tọa độ là
A. \(\overrightarrow v = \left( {13; - 7} \right)\)
B. \(\overrightarrow v = \left( { - 13; - 7} \right)\)
C. \(\overrightarrow v = \left( { - 13;7} \right)\)
D. \(\overrightarrow v = \left( {13;7} \right)\)
05/11/2021 6 Lượt xem
05/11/2021 6 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
- 14 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận