Câu hỏi:

Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng -9 và tổng các bình phương của chúng bằng 29. 

196 Lượt xem
18/11/2021
3.1 11 Đánh giá

A. 1; 2; 3

B. -4; -3; -2

C. -2; -1; 0

D. -3; -2; -1

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho cấp số nhân \({u_1} = - 1\), \({u_6} = 0,00001\). Khi đó q và số hạng tổng quát là

A. \(q = \frac{1}{{10}},{u_n} = \frac{{ - 1}}{{{{10}^{n - 1}}}}\)

B. \(q = \frac{{ - 1}}{{10}},{u_n} = - {10^{n - 1}}\)

C. \(q = \frac{{ - 1}}{{10}},{u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{10}^{n - 1}}}}\)

D. \(q = \frac{1}{{10}},{u_n} = \frac{1}{{{{10}^{n - 1}}}}\)

Xem đáp án

18/11/2021 2 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai? 

A. \(A^{\prime} C^{\prime} \perp B D\)

B. \(B B^{\prime} \perp B D\)

C. \(A^{\prime} B \perp D C^{\prime}\)

D. \(B C^{\prime} \perp A^{\prime} D\)

Xem đáp án

18/11/2021 3 Lượt xem

Câu 6:

Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\sqrt{2}+(\sqrt{2})^{2}+\ldots+(\sqrt{2})^{n}\) Mệnh đề nào sau đây đúng ? 

A. \(\lim u_{n}=-\infty\)

B. \(\lim u_{n}=\frac{\sqrt{2}}{1-\sqrt{2}}\)

C. \(\lim u_{n}=+\infty\)

D. \(\text{Không tồn tại }\lim u_{n}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phạm Phú Thứ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh