Câu hỏi:

Tìm giới hạn \(B=\lim \limits_{x \rightarrow 1} \frac{x^{4}-3 x^{2}+2}{x^{3}+2 x-3}\)

287 Lượt xem
18/11/2021
3.7 18 Đánh giá

A. \(+\infty\)

B. \(-\frac{2}{5}\)

C. 0

D. \(-\infty\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

18/11/2021 1 Lượt xem

Câu 2:

Cho hàm số \(\begin{equation} f(x)=\frac{x-2}{x^{2}-3 x+2} \end{equation}\) . Hàm số liên tục trên 

A. \((-\infty ; 1) \text { và }(1 ;+\infty)\)

B. R

C. \(\begin{array}{l} (-\infty ; 2) \text { và }(2 ;+\infty) \end{array}\)

D. \((-\infty ; 1),(1 ; 2) \text { và }(2 ;+\infty)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3:

Tam giác ABC có ba góc \(\hat A,\hat B,\hat C\)  theo thứ tự đó lập thành cấp số cộng và \(\hat C= 5\hat A\) . Xác định số đo các góc \(\hat A,\hat B,\hat C\)

A. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=10^{\circ} \\ \hat B=120^{\circ} \\ \hat C=50^{\circ} \end{array}\right. \end{aligned}\)

B. \(\left\{\begin{array}{l} \hat A=15^{\circ} \\ \hat B=105^{\circ} \\ \hat C=60^{\circ} \end{array}\right.\)

C. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=5^{0} \\ \hat B=60^{\circ} \\ \hat C=25^{\circ} \end{array}\right. \end{aligned}\)

D. \(\left\{\begin{array}{l} \hat A=20^{\circ} \\ \hat B=60^{\circ} \\ \hat C=100^{\circ} \end{array}\right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phạm Phú Thứ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh