Câu hỏi:

Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được cấp số cộng có 1001 số hạng. Tìm số hạng thứ 501.

167 Lượt xem
18/11/2021
3.9 15 Đánh giá

A. 1009

B. \(\frac{{2019}}{2}\)

C. 1010

D. \(\frac{{2021}}{2}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hàm số y = f( x) có đồ thị như hình vẽ, chọn kết luận đúng:

A. Hàm số liên tục trên khoảng (0;3)

B. Hàm số liên tục trên khoảng (0;2)

C. Hàm số không liên tục trên khoảng (−∞;0)

D. Hàm số không liên tục trên khoảng (0;4)

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 2 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Tam giác ABC có ba cạnh a, b, c thỏa mãn a2, b2, c2 theo thứ tự đó lập thành một cấp số cộng. Chọn khẳng định đúng trong các khẳng định sau:

A. \({\tan ^2}A,{\tan ^2}B,{\tan ^2}C\) theo thứ tự đó lập thành một cấp số cộng.

B. \({\cot ^2}A,{\cot ^2}B,{\cot ^2}C\) theo thứ tự đó lập thành một cấp số cộng.

C. \(\cos A,\cos B,\cos C\) theo thứ tự đó lập thành một cấp số cộng.

D. \({\sin ^2}A,{\sin ^2}B,{\sin ^2}C\) theo thứ tự đó lập thành một cấp số cộng.

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6:

Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng

A. \(\frac{{40}}{9}\left( {{{10}^{2018}} - 1} \right) + 2018\)

B. \(\frac{4}{9}\left( {\frac{{{{10}^{2019}} - 10}}{9} - 2018} \right)\)

C. \(\frac{4}{9}\left( {\frac{{{{10}^{2019}} - 10}}{9} + 2018} \right)\)

D. \(\frac{4}{9}\left( {{{10}^{2018}} - 1} \right)\)

Xem đáp án

18/11/2021 3 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh