Câu hỏi:
Cho (un) là cấp số cộng biết \({u_3} + {u_{13}} = 80\). Tổng 15 số hạng đầu của cấp số cộng đó bằng
A. 800
B. 600
C. 570
D. 630
Câu 1: Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây sai?
A. \(SC \bot \left( {ABC} \right)\)
B. Nếu A' là hình chiếu vuông góc của A lên (SBC) thì \(A' \in SB\).
C. \(\left( {SAC} \right) \bot \left( {ABC} \right)\)
D. BK là đường cao của tam giác ABC thì \(BK \bot \left( {SAC} \right)\)
18/11/2021 1 Lượt xem
Câu 2: Cho hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 1. Gọi Ak+1, Bk+1, Ck+1, Dk+1 thứ tự là trung điểm các cạnh AkBk, BkCk, CkDk, DkAk (với k = 1, 2, ... ). Chu vi của hình vuông \({A_{2018}}{B_{2018}}{C_{2018}}{D_{2018}}\) bằng
A. \(\frac{{\sqrt 2 }}{{{2^{2018}}}}.\)
B. \(\frac{{\sqrt 2 }}{{{2^{1007}}}}.\)
C. \(\frac{{\sqrt 2 }}{{{2^{2017}}}}.\)
D. \(\frac{{\sqrt 2 }}{{{2^{1006}}}}.\)
18/11/2021 1 Lượt xem
Câu 3: Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{A K}, \overrightarrow{G F} \end{array}\) đồng phẳng.
B. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G F} \end{array}\)đồng phẳng.
C. \(\overrightarrow{B D}, \overrightarrow{E K}, \overrightarrow{G F}\) đồng phẳng.
D. \(\overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G C}\) đồng phẳng.
18/11/2021 1 Lượt xem
Câu 4: Tìm giới hạn \(B=\lim \limits_{x \rightarrow+\infty} \frac{x \sqrt{x^{2}+1}-2 x+1}{\sqrt[3]{2 x^{3}-2}+1}\)
A. \(-\infty\)
B. \(+\infty\)
C. 1
D. 0
18/11/2021 1 Lượt xem
Câu 5: Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
A. \(\frac{1}{3};1;\frac{5}{3}\)
B. \(\frac{1}{4};1;\frac{7}{4}\)
C. \(\frac{3}{4};1;\frac{5}{4}\)
D. \(\frac{1}{2};1;\frac{3}{2}\)
18/11/2021 1 Lượt xem
Câu 6: Cho hình vuông ABCD có cạnh bằng a và có diện tích \({S_1}\). Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích S3, …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5,…, S100 (tham khảo hình bên). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
61970d9897f7b.png)
61970d9897f7b.png)
A. \(S = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{100}}}}\)
B. \(S = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{99}}}}\)
C. \(S = \frac{{{a^2}}}{{{2^{100}}}}\)
D. \(S = \frac{{{a^2}\left( {{2^{99}} - 1} \right)}}{{{2^{98}}}}\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 619
- 1
- 30
-
57 người đang thi
- 604
- 0
- 30
-
10 người đang thi
- 610
- 0
- 30
-
81 người đang thi
- 524
- 0
- 30
-
86 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận