Câu hỏi:
Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong 3 viên bi lấy được có đủ 3 màu là \(\dfrac9{28}\). Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh.
A. \(P=\frac{9}{{14}}\)
B. \(P=\frac{9}{{15}}\)
C. \(P=\frac{9}{{17}}\)
D. \(P=\frac{9}{{4}}\)
Câu 1: Cho hàm số \(y = {x^3} + b{x^2} + d\) \(\left( {b,d \in R } \right)\) có đồ thị như hình dưới đây. Mệnh đề nào dưới đây đúng?
6184b99d1b8fe.png)
6184b99d1b8fe.png)
A. b > 0;d > 0
B. b > 0;d < 0
C. b < 0;d > 0
D. b < 0;d < 0
05/11/2021 1 Lượt xem
Câu 2: Cho a, b là các số thực dương thỏa mãn \({\log _4}a + {\log _9}{b^2} = 5\) và \({\log _4}{a^2} + {\log _9}b = 4\). Giá trị ab là:
A. 48
B. 256
C. 144
D. 324
05/11/2021 1 Lượt xem
Câu 3: Cho hình tứ diện OABC có đáy OBC là tam giác vuông tại O, OB = a, \(OC = a\sqrt 3 \). Cạnh OA vuông góc với mặt phẳng (OBC), \(OA = a\sqrt 3 \), gọi M là trung điểm của BC. Tính theo a khoảng cách h giữa hai đường thẳng AB và OM.
A. \(h = \frac{{a\sqrt 5 }}{5}\)
B. \(h = \frac{{a\sqrt {15} }}{5}\)
C. \(h = \frac{{a\sqrt 3 }}{2}\)
D. \(h = \frac{{a\sqrt 3 }}{{15}}\)
05/11/2021 4 Lượt xem
Câu 4: Cho hình lăng trụ ABC.A'B'C'. Gọi M , N, P lần lượt là các điểm thuộc các cạnh AA', BB', CC' sao cho AM = 2MA', NB' = 2NB, PC = PC'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện ABCMNP và A'B'C'MNP. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
A. \(\frac{{{V_1}}}{{{V_2}}} = 2\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = 1\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\)
05/11/2021 1 Lượt xem
Câu 5: Xét các số thực dương x, y thỏa mãn \({\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y \le {\log _{\frac{1}{2}}}\left( {x + {y^2}} \right)\). Tìm giá trị nhỏ nhất Pmin của biểu thức P = x+3y.
A. \({P_{\min }} = \frac{{17}}{2}.\)
B. \({P_{\min }} = 9.\)
C. \({P_{\min }} = \frac{{25\sqrt 2 }}{4}.\)
D. \({P_{\min }} = 8.\)
05/11/2021 2 Lượt xem
Câu 6: Tìm họ tất các các nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{1 - x}}\) trên khoảng \((1; + \infty ).\)
A. \(- 2x - 3\ln \left( {1 - x} \right) + C{\rm{ }}\left( {C \in R} \right).\)
B. \( - 2x + 3\ln \left( {x - 1} \right) + C{\rm{ }}\left( {C \in R} \right).\)
C. \( - 2x + 3\ln \left( {1 - x} \right) + C{\rm{ }}\left( {C \in R} \right).\)
D. \(- 2x - 3\ln \left( {x - 1} \right) + C{\rm{ }}\left( {C \in R} \right).\)
05/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quốc Tuấn
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
81 người đang thi
- 1.2K
- 122
- 50
-
47 người đang thi
- 1.0K
- 75
- 50
-
96 người đang thi
- 834
- 35
- 50
-
90 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận