Câu hỏi:
Gọi S là tập hợp các số tự nhiên có 4 chữ số khác nhau. Chọn ngẫu nhiên một số từ tập S. Tìm xác suất để số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau.
A. \(\frac{1}{{36}}\)
B. \(\frac{2}{3}\)
C. \(\frac{5}{{63}}\)
D. \(\frac{5}{{1512}}\)
05/11/2021 9 Lượt xem
Câu 2: Cho hàm số bậc ba f(x) có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f(x) + 1 = m có 3 nghiệm phân biệt là
A. 4
B. 5
C. 2
D. 3
05/11/2021 8 Lượt xem
Câu 3: Trong không gian Oxyz, tọa độ tâm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y - 6 = 0\) là
A. (2;4;0)
B. (1;2;0)
C. (1;2;3)
D. (2;4;6)
05/11/2021 8 Lượt xem
Câu 4: Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 10{x^2} + 1\) trên đoạn [-3;2] bằng
A. 1
B. -23
C. -24
D. -8
05/11/2021 8 Lượt xem
Câu 5: Họ nguyên hàm của hàm số \(y = {e^x}\left( {1 - \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là
A. \({e^x} + \tan x + C\)
B. \({e^x} - \tan x + C\)
C. \({e^x} - \frac{1}{{\cos x}} + C\)
D. \({e^x} + \frac{1}{{\cos x}} + C\)
05/11/2021 7 Lượt xem
Câu 6: Cho phương trình \(\sqrt {\log _3^2x - 4{{\log }_3}x - 5} = m\left( {{{\log }_3}x + 1} \right)\) với m là tham số thực. Tìm tất cả các giá trị của m để phương trình có nghiệm thuộc \(\left[ {27; + \infty } \right)\).
A. 0 < m < 2
B. \(0 < m \le 2\)
C. \(0 \le m \le 1\)
D. \(0 \le m < 1\)
05/11/2021 7 Lượt xem
- 37 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận