Câu hỏi:

Đạo hàm của hàm số \(y = {x^4} + 3{x^2} - x + 1\) là

308 Lượt xem
18/11/2021
4.1 12 Đánh giá

A. \(y' = 4{x^3} - 6{x^2} + x\)

B. \(y' = 4{x^3} + 3{x^2} - x\).

C. \(y' = 4{x^3} + 6x - 1\).

D. \(y' = 4{x^3} - 6x + 1\).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Đạo hàm của hàm số \(y = \sin ({x^2} + 1)\) bằng:

A. \(y' = 2x\sin ({x^2} + 1)\).

B. \(y' = 2x\cos ({x^2} + 1)\).

C. \(y' = 2\cos ({x^2} + 1)\) .

D. \(y' = ({x^2} + 1)\cos (2x)\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3:

Trong các giới hạn sau đây, giới hạn nào bằng 2?

A. \(\lim \left( {2{n^2} + n + 3} \right)\)

B. \(\lim \frac{{2{n^5} - {n^4}}}{{ - 3{n^3} + {n^5}}}\)

C. \(\lim \frac{{2{n^2} + 1}}{{{n^4} + 3}}\)

D. \(\lim \frac{{{n^3} - 1}}{{ - 2{n^2} + 4{n^3}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Trong bốn giới hạn sau đây, giới hạn nào là \( - \infty \)?

A. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 4}}{{x - 1}}\)

B. \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x + 4}}{{x - 1}}\)

C. \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 4}}{{x - 1}}\)

D. \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - x + 4}}{{x - 1}}\)

Xem đáp án

18/11/2021 0 Lượt xem

Câu 6:

Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?

A. \(y = {x^3} - 2x + 4.\)

B. \(y = \sqrt {2x - 1} .\)

C. \(y = \tan x.\)

D. \(y = \frac{{x + 2}}{{x - 1}}.\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh