Câu hỏi:

Có bao nhiêu giá trị nguyên của tham số m\(\left( {\left| m \right| < 10} \right)\) để phương trình \({2^{x - 1}} = {\log _4}\left( {x + 2m} \right) + m\) có nghiệm?

103 Lượt xem
05/11/2021
3.0 5 Đánh giá

A. 9

B. 10

C. 5

D. 4

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho hàm số \(f\left( x \right) = \sqrt {{{\log }_2}\left( {3x + 4} \right)} \). Tập hợp nào sau đây là tập xác định của f(x) là

A. \(D = \left( { - 1; + \infty } \right)\)

B. \(D = \left( { - \frac{4}{3}; + \infty } \right)\)

C. \(D = \left[ { - 1; + \infty } \right)\)

D. \(D = \left[ {1; + \infty } \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 2:

Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?

A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)

D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 3:

Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

A. - 5x - 3y + 3z - 14 = 0

B. - 10x - 6y + 6z + 15 = 0

C. - 10x - 6y + 6z - 15 = 0

D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3); B(-1;4;1) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?

A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\)

D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh