Câu hỏi:

Cho x > 8y > 0. Giá trị nhỏ nhất của biểu thức \(F = x + \frac{1}{{y\left( {x - 8y} \right)}}\) là

324 Lượt xem
18/11/2021
3.8 12 Đánh giá

A. 3

B. 6

C. 8

D. 9

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho x, y là các số thực dương và thỏa mãn \(x + y \ge 3.\) Tìm giá trị nhỏ nhất \({F_{\min }}\) của biểu thức \(F = x + y + \frac{1}{{2x}} + \frac{2}{y}.\)

A. \({F_{\min }} = 4\frac{1}{2}.\)

B. \({F_{\min }} = 3\sqrt 2 .\)

C. \({F_{\min }} = 4\frac{1}{3}.\)

D. \({F_{\min }} = 4\frac{2}{3}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Tập nghiệm của bất phương trình \(2 x-1>0\) là

A. \(\left(-\infty ;-\frac{1}{2}\right)\)

B. \(\left(-\infty ; \frac{1}{2}\right)\)

C. \(\left(-\frac{1}{2} ;+\infty\right)\)

D. \(\left(\frac{1}{2} ;+\infty\right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho nhị thức bậc nhất \(f\left( x \right) = 23x - 20\). Khẳng định nào sau đây đúng?

A. f(x) > 0 với \(\forall x \in R\)

B. f(x) > 0 với \(\forall x \in \left( { - \infty ;\frac{{20}}{{23}}} \right)\)

C. f(x) > 0 với \(x > - \frac{5}{2}\)

D. f(x) > 0 với \(\forall x \in \left( {\frac{{20}}{{23}}; + \infty } \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 10 năm 2021 của Trường THPT Nguyễn Hữu Thọ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh