Câu hỏi:

Cho x > 8y > 0. Giá trị nhỏ nhất của biểu thức \(F = x + \frac{1}{{y\left( {x - 8y} \right)}}\) là

236 Lượt xem
18/11/2021
3.8 12 Đánh giá

A. 3

B. 6

C. 8

D. 9

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Tập nghiệm của bất phương trình \(2 x-1>0\) là

A. \(\left(-\infty ;-\frac{1}{2}\right)\)

B. \(\left(-\infty ; \frac{1}{2}\right)\)

C. \(\left(-\frac{1}{2} ;+\infty\right)\)

D. \(\left(\frac{1}{2} ;+\infty\right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3:

Biểu thức \(f\left( x \right) = \frac{{11x + 3}}{{ - \,{x^2} + 5x - 7}}\) nhận giá trị dương khi và chỉ khi 

A. \(x \in \left( { - \frac{3}{{11}}; + \,\infty } \right).\)

B. \(x \in \left( { - \frac{3}{{11}};5} \right).\)

C. \(x \in \left( { - \,\infty ; - \frac{3}{{11}}} \right).\)

D. \(x \in \left( { - \,5; - \,\frac{3}{{11}}} \right).\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6:

Tập nghiệm S của bất phương trình \(\frac{{x - 7}}{{4{x^2} - 19x + 12}} > 0\) là

A. \(S = \left( { - \,\infty ;\frac{3}{4}} \right) \cup \left( {4;7} \right).\)

B. \(S = \left( {\frac{3}{4};4} \right) \cup \left( {7; + \,\infty } \right).\)

C. \(S = \left( {\frac{3}{4};4} \right) \cup \left( {4; + \,\infty } \right).\)

D. \(S = \left( {\frac{3}{4};7} \right) \cup \left( {7; + \,\infty } \right).\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 10 năm 2021 của Trường THPT Nguyễn Hữu Thọ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh