Câu hỏi:
Cho phương trình \(\sqrt {\log _3^2x - 4{{\log }_3}x - 5} = m\left( {{{\log }_3}x + 1} \right)\) với m là tham số thực. Tìm tất cả các giá trị của m để phương trình có nghiệm thuộc \(\left[ {27; + \infty } \right)\).
A. 0 < m < 2
B. \(0 < m \le 2\)
C. \(0 \le m \le 1\)
D. \(0 \le m < 1\)
Câu 1: Xét tất cả các số thực dương a và b thỏa mãn \({\log _3}a = {\log _{27}}\left( {{a^2}\sqrt b } \right)\). Mệnh đề nào dưới đây đúng?
A. a = b2
B. a3 = b
C. a = b
D. a2 = b
05/11/2021 9 Lượt xem
Câu 2: Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 10{x^2} + 1\) trên đoạn [-3;2] bằng
A. 1
B. -23
C. -24
D. -8
05/11/2021 8 Lượt xem
Câu 3: Với số thực dương a tùy ý, \({\log _3}\sqrt a \) bằng
A. \(2 + {\log _3}a\)
B. \(\frac{1}{2} + {\log _3}a\)
C. \(2{\log _3}a\)
D. \(\frac{1}{2}{\log _3}a\)
05/11/2021 8 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a,AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Gọi M điểm trên AB sao cho AM = 2a, tính khoảng cách giữa MD và SC.
A. \(\frac{{a\sqrt {17} }}{5}\)
B. \(\frac{{a\sqrt {15} }}{{10}}\)
C. \(\frac{{a\sqrt 6 }}{{19}}\)
D. \(\frac{{a\sqrt 3 }}{{15}}\)
05/11/2021 10 Lượt xem
05/11/2021 7 Lượt xem
05/11/2021 7 Lượt xem

- 37 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.8K
- 283
- 50
-
33 người đang thi
- 1.0K
- 121
- 50
-
18 người đang thi
- 899
- 75
- 50
-
26 người đang thi
- 714
- 35
- 50
-
34 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận