Câu hỏi:
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy điểm M thuộc đoạn AD', điểm N thuộc đoạn BD sao cho AM = DN = x, (0 < x < a√2/2). Tìm x theo a để đoạn MN ngắn nhất.
A.
B.
C.
D.
Câu 1: Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6x + 3y - 2z - 6 = 0
B. x + 2y + 3z - 14 = 0
C. x + 3y + 2z - 11 = 0
D.
30/11/2021 0 Lượt xem
Câu 2: Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).
A. A. arccos(4/15)
B. 1
C. arcsin(4/5)
D. arccos(4/5)
30/11/2021 0 Lượt xem
Câu 3: Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5) và D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức đạt giá trị nhỏ nhất. Khi đó tọa độ của M là:
A. M (0;1;-4)
B. M (2;1;0)
C. M (0;1;-2)
D. M (0;1;4)
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho các điểm A (0; 0; -2), B(4; 0; 0). Mặt cầu (S) có bán kính nhỏ nhất, đi qua O, A, B có tâm là:
A. A. I (0;0;-1)
B. I (2;0;0)
C. I (2;0;-1)
D. I (4/3;0;-2/3)
30/11/2021 0 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(0;0;-6), B(0;1;-8), C(1;2;-5) và D(4;3;8). Hỏi có tất cả bao nhiêu mặt phẳng cách đều bốn điểm đó?
A. Có vô số mặt phẳng.
B. 1 mặt phẳng.
C. 7 mặt phẳng.
D. 4 mặt phẳng.
30/11/2021 0 Lượt xem
Câu hỏi trong đề: 200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P1)
- 0 Lượt thi
- 25 Phút
- 25 Câu hỏi
- Học sinh
Cùng danh mục Chương 3: Phương pháp tọa độ trong không gian
- 412
- 0
- 25
-
41 người đang thi
- 370
- 1
- 15
-
66 người đang thi
- 381
- 2
- 15
-
69 người đang thi
- 337
- 2
- 15
-
43 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận