Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z
A. A. P = 0
B. P = 2P = 0
C. P = 6
D. P = -2
Câu 1: Trong không gian Oxyz, cho điểm H (2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A, B, C sao cho H là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
A. 2x + y + z - 6 = 0
B. x + 2y + z - 6 = 0
C. x + 2y + 2z - 6 = 0
D. 2x + y + z + 6 = 0
30/11/2021 0 Lượt xem
Câu 2: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0), C(0;0;1), D(0;0;0). Hỏi có bao nhiêu điểm cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB).
A. A. 4
B. 5
C. 1
D. 8
30/11/2021 0 Lượt xem
Câu 3: Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2;-3;7), B(0;4;1), C(3;0;5) và D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức đạt giá trị nhỏ nhất. Khi đó tọa độ của M là:
A. M (0;1;-4)
B. M (2;1;0)
C. M (0;1;-2)
D. M (0;1;4)
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem

Câu hỏi trong đề: 200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P1)
- 0 Lượt thi
- 25 Phút
- 25 Câu hỏi
- Học sinh
Cùng danh mục Chương 3: Phương pháp tọa độ trong không gian
- 344
- 0
- 25
-
13 người đang thi
- 305
- 1
- 15
-
83 người đang thi
- 315
- 2
- 15
-
39 người đang thi
- 278
- 2
- 15
-
42 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận