Câu hỏi:

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?

307 Lượt xem
18/11/2021
3.5 13 Đánh giá

A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)

B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)

C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)

D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

18/11/2021 2 Lượt xem

Câu 3:

Trong các mệnh đề sau, mệnh đề nào sai ?

A. \(\lim \frac{1}{{{n^k}}} = 0\)\(\left( {k \ge 1} \right)\).

B. \(\lim {q^n} =  + \infty \) nếu \(q > 1\) .

C. \(\lim {q^n} =  + \infty \) nếu \(\left| q \right| < 1\).

D. \(\lim {n^k} =  + \infty \) với \(k\) nguyên dương.

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Tính đạo hàm của hàm số \(y = \tan 3x\).

A. \(y' =  - \frac{3}{{{{\cos }^2}3x}}\)

B. \(y' =  - \frac{3}{{si{n^2}3x}}\).

C. \(y' = \frac{{3x}}{{{{\cos }^2}3x}}\).

D. \(y' = \frac{3}{{{{\cos }^2}3x}}\).

Xem đáp án

18/11/2021 0 Lượt xem

Câu 6:

Cho hàm số \(f(x) = \frac{1}{3}{x^3} + \frac{1}{2}{x^2} - 12x - 1\). Giải phương trình \(f'(x) = 0\).

A. \(\left\{ { - 4;3} \right\}\)

B. \(\left[ { - 3;4} \right]\).

C. \(\left[ { - 4;3} \right]\).

D. \(\left( { - \infty ; - 3} \right] \cup \left[ {4; + \infty } \right)\).

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh