Câu hỏi:
Cho hình chóp S.ABCD có cạnh bằng bên bằng nhau và bằng 2a, đáy là hình chữ nhật ABCD có AB = 2a, AD = a. Gọi K là điểm thuộc BC sao cho . Tính khoảng cách giữa hai đường thẳng AD và SK.
A.
B.
C.
D.
Câu 1: Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).
A. A. arccos(4/15)
B. 1
C. arcsin(4/5)
D. arccos(4/5)
30/11/2021 0 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng (P) cắt các trục tọa độ tại các điểm A, B, C. Tính thể tích khối chóp O.ABC
A. 1372/9
B. B. 686/9
C. C. 524/3
D. 343/9
30/11/2021 0 Lượt xem
Câu 3: Trong không gian Oxyz, cho điểm H (2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A, B, C sao cho H là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
A. 2x + y + z - 6 = 0
B. x + 2y + z - 6 = 0
C. x + 2y + 2z - 6 = 0
D. 2x + y + z + 6 = 0
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(0;0;-6), B(0;1;-8), C(1;2;-5) và D(4;3;8). Hỏi có tất cả bao nhiêu mặt phẳng cách đều bốn điểm đó?
A. Có vô số mặt phẳng.
B. 1 mặt phẳng.
C. 7 mặt phẳng.
D. 4 mặt phẳng.
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem

Câu hỏi trong đề: 200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P1)
- 0 Lượt thi
- 25 Phút
- 25 Câu hỏi
- Học sinh
Cùng danh mục Chương 3: Phương pháp tọa độ trong không gian
- 345
- 0
- 25
-
51 người đang thi
- 306
- 1
- 15
-
23 người đang thi
- 316
- 2
- 15
-
84 người đang thi
- 279
- 2
- 15
-
79 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận