Câu hỏi:

Cho hàm số \(f(x)=\left\{\begin{array}{l} \frac{x^{3}-8}{x-2} \text { khi } x \neq 2 \\ m x+1 \text { khi } x=2 \end{array}\right.\). Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 2.

281 Lượt xem
18/11/2021
3.8 12 Đánh giá

A. \(m=\frac{11}{2}\)

B. \(m=\frac{13}{2}\)

C. \(m=\frac{15}{2}\)

D. \(m=\frac{17}{2}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

18/11/2021 1 Lượt xem

Câu 3:

Cho hàm số \(f(x)=\left\{\begin{array}{l} 3 x+2 \text { khi } x<-1 \\ x^{2}-1 \text { khi } x \geq-1 \end{array}\right.\). Chọn khẳng định đúng trong các khẳng định sau. 

A. f(x) liên tục trên \(\begin{aligned} &\mathbb{R} \end{aligned}\)

B. f(x) liên tục trên \((-\infty ;-1]\)

C. f(x) liên tục trên \([-1 ;+\infty)\)

D. f(x) liên tục tại x=1

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho cấp số nhân \({u_1} = - 1\), \({u_6} = 0,00001\). Khi đó q và số hạng tổng quát là

A. \(q = \frac{1}{{10}},{u_n} = \frac{{ - 1}}{{{{10}^{n - 1}}}}\)

B. \(q = \frac{{ - 1}}{{10}},{u_n} = - {10^{n - 1}}\)

C. \(q = \frac{{ - 1}}{{10}},{u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{10}^{n - 1}}}}\)

D. \(q = \frac{1}{{10}},{u_n} = \frac{1}{{{{10}^{n - 1}}}}\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phạm Phú Thứ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh