Câu hỏi:

Cho hai vectơ \(\overrightarrow a = \left( {1;\sqrt 3 } \right),\overrightarrow b = \left( { - 2\sqrt 3 ;6} \right)\). Góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là:

316 Lượt xem
18/11/2021
3.5 17 Đánh giá

A. 0o

B. 30o

C. 45o

D. 60o

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:

A. \(\overrightarrow {OC} + \overrightarrow {OB} \)

B. \(\overrightarrow {BA}\)

C. \(\overrightarrow {OC} + \overrightarrow {OD} \)

D. \(\overrightarrow {CD} \)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3:

Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn thẳng AB?

A. OA = OB

B. \(\overrightarrow {OA} = \overrightarrow {OB} \)

C. \(\overrightarrow {AO} = \overrightarrow {BO} \)

D. \(\overrightarrow {OA} = - \overrightarrow {OB} \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?

A. \(\overrightarrow {AC} \bot \overrightarrow {CB} \)

B. Tam giác ABC đều

C. Tứ giác ABCD là hình vuông

D. Tứ giác ABCD không nội tiếp đường tròn

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Biết rằng hai tam giác ABC và A’B’C’ có cùng trọng tâm. Đẳng thức nào sau đây là sai?

A. \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \)

B. \(\overrightarrow {AA'} + \overrightarrow {AB'} + \overrightarrow {AC'} = \overrightarrow 0 \)

C. \(\overrightarrow {AB'} + \overrightarrow {BC'} + \overrightarrow {CA'} = \overrightarrow 0 \)

D. \(\overrightarrow {AC'} + \overrightarrow {BA'} + \overrightarrow {CB'} = \overrightarrow 0 \)

Xem đáp án

18/11/2021 5 Lượt xem

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK1 môn Toán 10 năm 2020 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 30 Câu hỏi
  • Học sinh