Câu hỏi: Cho đồ thị vô hướng G=(V,E), với |V| = n; |E|=m. Tổng bậc của tất cả các đỉnh trong đồ thị G là?
A. -1.m
B. -2.m
C. 1.m
D. 2.m
Câu 1: Câu nào dưới đây KHÔNG là một mệnh đề:
A. An là sinh viên khoa CNTT
B. An không phải học Trí tuệ nhân tạo
C. X là sinh viên không phải học Trí tuệ nhân tạo
D. An là sinh viên CNTT nhưng không phải học Trí tuệ nhân tạo.
30/08/2021 4 Lượt xem
Câu 2: Công thức đa thức là?
A. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu)
B. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu)
C. Công thức biểu diễn hàm Boole thành tổng của các từ đơn
D. Công thức biểu diễn hàm Boole thành tổng của các đơn thức
30/08/2021 3 Lượt xem
Câu 3: Cho đồ thị G có trọng số như hình sau: 
A. Có vì các đỉnh của đồ thị đều có bậc chẵn
B. Không, vì nó chứa các đỉnh bậc lẻ (a,k,m,c,d,h)
C. Không, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h)
D. Có, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h)
30/08/2021 3 Lượt xem
Câu 4: Câu nào sau đây KHÔNG phải là một mệnh đề:
A. Có ai ở nhà không?
B. Hà Nội là thủ đô của Việt Nam
C. Hôm nay trời mưa
D. 2+1=5
30/08/2021 5 Lượt xem
Câu 5: Dạng chính tắc tuyển (nối rời chính tắc) của hàm Boole là…?
A. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu)
B. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu)
C. Công thức biểu diễn hàm Boole thành tổng của các đơn thức
30/08/2021 3 Lượt xem
Câu 6: Cho G là đồ thị có hướng, phát biểu nào sau đây là chính xác nhất:
A. G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung (cùng chiều) nối với nhau và có thể có khuyên.
B. G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung nối với nhau và không có khuyên.
C. G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và không có khuyên.
D. G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và có thể có khuyên
30/08/2021 4 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Toán rời rạc - Phần 10
- 31 Lượt thi
- 60 Phút
- 30 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Toán rời rạc có đáp án
- 2.6K
- 206
- 30
-
25 người đang thi
- 913
- 72
- 30
-
36 người đang thi
- 953
- 47
- 30
-
40 người đang thi
- 604
- 33
- 30
-
60 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận