Câu hỏi:
Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
Câu 1: \(\text { Kết quả của giới hạn } \lim \left(5-\frac{n \cos 2 n}{n^{2}+1}\right) \text { bằng: }\)
A. 2
B. 3
C. 4
D. 5
18/11/2021 2 Lượt xem
18/11/2021 2 Lượt xem
Câu 3: Cho cấp số cộng (un) có u1 = 4. Tìm giá trị nhỏ nhất của \({u_1}{u_2} + {u_2}{u_3} + {u_3}{u_1}\)?
A. -20
B. -6
C. -8
D. -24
18/11/2021 3 Lượt xem
Câu 4: Chọn kết quả đúng trong các kết quả sau của \(\lim \limits_{x \rightarrow-\infty}\left(4 x^{5}-3 x^{3}+x+1\right)\)
A. \(-\infty\)
B. 4
C. 0
D. \(+\infty\)
18/11/2021 1 Lượt xem
Câu 5: Tìm a để các hàm số \(f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {4x + 1} - 1}}{{a{x^2} + (2a + 1)x}}{\rm{ \ khi \ }}x \ne 0\\ 3{\rm{ \ khi \ }}x = 0{\rm{ }} \end{array} \right.\) liên tục tại x = 0
A. \(\dfrac12\)
B. \(\dfrac14\)
C. \(-\dfrac16\)
D. 0
18/11/2021 2 Lượt xem
Câu 6: Cho dãy số (an) thỏa mãn a1 = 1 và \({a_n} = 10{a_{n - 1}} - 1\), \(\forall n \ge 2\). Tìm giá trị nhỏ nhất của n để \(\log {a_n} > 100\).
A. 100
B. 101
C. 102
D. 103
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 633
- 1
- 30
-
58 người đang thi
- 625
- 0
- 30
-
92 người đang thi
- 626
- 0
- 30
-
23 người đang thi
- 540
- 0
- 30
-
36 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận