Câu hỏi:

Tìm toạ độ giao điểm của hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}} {x = - 3 + 4t}\\ {y = 2 + 5t} \end{array}} \right.\) và \({d_2}:\left\{ {\begin{array}{*{20}{c}} {x = 1 + 4t'}\\ {y = 7 - 5t'} \end{array}} \right..\)

254 Lượt xem
18/11/2021
3.8 13 Đánh giá

A. (1;7)

B. (-3;2)

C. (2;-3)

D. (5;1)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho \(f(x)=2 x-4\) , khẳng định nào sau đây là đúng?

A. \(f(x)>0 \Leftrightarrow x \in(2 ;+\infty)\)

B. \(f(x)<0 \Leftrightarrow x \in(-\infty ;-2)\)

C. \(f(x)>0 \Leftrightarrow x \in(-2 ;+\infty)\)

D. \(f(x)=0 \Leftrightarrow x=-2\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2:

Cho nhị thức bậc nhất \(f\left( x \right) = 23x - 20\). Khẳng định nào sau đây đúng?

A. f(x) > 0 với \(\forall x \in R\)

B. f(x) > 0 với \(\forall x \in \left( { - \infty ;\frac{{20}}{{23}}} \right)\)

C. f(x) > 0 với \(x > - \frac{5}{2}\)

D. f(x) > 0 với \(\forall x \in \left( {\frac{{20}}{{23}}; + \infty } \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Tập nghiệm của bất phương trình \({x^3} + 3{x^2} - 6x - 8 \ge 0\) là

A. \(x \in \left[ { - \,4; - 1} \right] \cup \left[ {2; + \infty } \right).\)

B. \(x \in \left( { - \,4; - \,1} \right) \cup \left( {2; + \,\infty } \right).\)

C. \(x \in \left[ { - \,1; + \infty } \right).\)

D. \(x \in \left( { - \infty ; - \,4} \right] \cup \left[ { - \,1;2} \right].\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6:

Biểu thức \(f\left( x \right) = \frac{{11x + 3}}{{ - \,{x^2} + 5x - 7}}\) nhận giá trị dương khi và chỉ khi 

A. \(x \in \left( { - \frac{3}{{11}}; + \,\infty } \right).\)

B. \(x \in \left( { - \frac{3}{{11}};5} \right).\)

C. \(x \in \left( { - \,\infty ; - \frac{3}{{11}}} \right).\)

D. \(x \in \left( { - \,5; - \,\frac{3}{{11}}} \right).\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 10 năm 2021 của Trường THPT Nguyễn Hữu Thọ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh