Câu hỏi:

Tìm giới hạn \(F=\lim\limits _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}-x\right)\)

260 Lượt xem
18/11/2021
3.9 15 Đánh giá

A. \(+\infty\)

B. \(-\infty\)

C. 0

D. \(\frac{4}{3}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?

A. BB'C'C là hình chữ nhật.

B. \(\left( {AA'H} \right)\; \bot \left( {A'B'C'} \right)\)

C. \(\left( {BB'C'C} \right) \bot \;\left( {{\rm{ }}AA'H} \right)\)

D. \(\left( {AA'B'B} \right) \bot \left( {BB'C'C} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6:

Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng

A. \({u_{2018}} = \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)

B. \({u_{2018}} = \frac{{{2^{2018}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)

C. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)

D. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh