Câu hỏi:
Tìm giới hạn \(F=\lim\limits _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}-x\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. 0
D. \(\frac{4}{3}\)
Câu 1: Cho tứ diện ABCD có \(AB \bot \left( {BCD} \right)\). Trong \(\Delta BCD\) vẽ các đường cao BE và DF cắt nhau ở O. Trong (ADC) vẽ \(DK \bot AC\) tại K. Khẳng định nào sau đây sai ?
A. \(\left( {ADC} \right) \bot \left( {ABE} \right)\)
B. \(\left( {ADC} \right) \bot \left( {DFK} \right)\)
C. \(\left( {ADC} \right) \bot \left( {ABC} \right)\)
D. \(\left( {BDC} \right) \bot \left( {ABE} \right)\)
18/11/2021 2 Lượt xem
Câu 2: Cho cấp số cộng (un) có: u1 = −0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng này là:
A. 1,6
B. 6
C. 0,5
D. 0,6
18/11/2021 1 Lượt xem
18/11/2021 2 Lượt xem
18/11/2021 1 Lượt xem
Câu 5: \(\text { Kết quả của giới hạn } \lim \left(n^{2} \sin \frac{n \pi}{5}-2 n^{3}\right) \text { là: }\)
A. \(-\infty .\)
B. \(+\infty .\)
C. 0
D. 2
18/11/2021 1 Lượt xem
Câu 6: Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 620
- 1
- 30
-
92 người đang thi
- 605
- 0
- 30
-
75 người đang thi
- 610
- 0
- 30
-
33 người đang thi
- 526
- 0
- 30
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận