Câu hỏi:

Tập xác định của hàm số \(y = \left\{ \begin{array}{l} \sqrt {3 - x} \,\,,\,\,x \in \left( { - \infty ;0} \right)\\ \sqrt {\frac{1}{x}} \,\,\,\,\,\,\,\,,\,\,x \in \left( {0; + \infty } \right) \end{array} \right.\) là tập nào dưới đây?

225 Lượt xem
18/11/2021
3.6 18 Đánh giá

A. R \ {0}

B. R \ [0; 3]

C. R \ {0; 3}

D. R

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Tìm tất cả các giá trị của m để phương trình \({m^2}\left( {x + m} \right) = x + m\) có vô số nghiệm?

A. \(m = \pm1\)

B. m = 0 hoặc m = 1

C. m = 0 hoặc m = -1

D. \( - 1 < m < 1,\,m \ne 0\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho tam giác ABC có G là trọng tâm. Mệnh đề nào sau đây sai?

A. \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \) với mọi điểm M

B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

C. \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GA} \)

D. \(3\overrightarrow {AG} = \overrightarrow {AB} + \overrightarrow {AC} \)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6:

Trong mặt phẳng \(\left( {O,\overrightarrow i ,\overrightarrow j } \right)\) cho ba điểm \(A\left( {3;6} \right),{\rm{ }}B\left( {x; - 2} \right),{\rm{ }}C\left( {2;y} \right).\theta \). Tính \(\overrightarrow {OA} .\overrightarrow {BC} .\)

A. \(\overrightarrow {OA} .\overrightarrow {BC} = 3x + 6y - 12\)

B. \(\overrightarrow {OA} .\overrightarrow {BC} = - 3x + 6y + 18\)

C. \(\overrightarrow {OA} .\overrightarrow {BC} = - 3x + 6y + 12\)

D. \(\overrightarrow {OA} .\overrightarrow {BC} = 0\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK1 môn Toán 10 năm 2020 của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh