Câu hỏi:

Cho số phức z thỏa mãn \(\frac{{3 - 4i}}{z} = \frac{{\left( {2 + 3i} \right)\overline z }}{{{{\left| z \right|}^2}}} + 2 + i\), giá trị của \(\left| z \right|\) bằng

439 Lượt xem
05/11/2021
4.2 10 Đánh giá

A. \(\sqrt 5 \)

B. \(\sqrt {10} \)

C. 1

D. \(\sqrt 2 \)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong không gian Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B\left( {0;3;1} \right)\). Tọa độ trung điểm của đoạn thẳng AB là:

A. \(\left( {2;4; - 2} \right)\)

B. \(\left( { - 2;2;4} \right)\)

C. \(\left( { - 1;1;2} \right)\)

D. \(\left( { - 2; - 4;2} \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh