Câu hỏi:
Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{A K}, \overrightarrow{G F} \end{array}\) đồng phẳng.
B. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G F} \end{array}\)đồng phẳng.
C. \(\overrightarrow{B D}, \overrightarrow{E K}, \overrightarrow{G F}\) đồng phẳng.
D. \(\overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G C}\) đồng phẳng.
Câu 1: \(\text { Tính giới hạn } L=\lim \frac{n^{2}-3 n^{3}}{2 n^{3}+5 n-2}\)
A. \(L=-\frac{3}{2}\)
B. \(L=\frac{1}{2}\)
C. L = 0
D. L = 1
18/11/2021 1 Lượt xem
Câu 2: Cho hàm số \( f(x) = \frac{{{x^2} + 1}}{{{x^2} + 5x + 6}}\). Hàm số f( x) liên tục trên khoảng nào sau đây?
A. (−∞;3)
B. (2;3)
C. (-3;2)
D. (−3;+∞)
18/11/2021 3 Lượt xem
Câu 3: Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng
A. \(\frac{{3280}}{{6561}}\)
B. \(\frac{{25942}}{{59049}}\)
C. \(\frac{{29524}}{{59049}}\)
D. \(\frac{1}{{243}}\)
18/11/2021 1 Lượt xem
Câu 4: Cho tứ diện ABCD . Gọi M, N lần lượt là trung điểm của AB, CD và G là trung điểm của MN . Trong các khẳng định sau, khẳng định nào sai?
A. \(\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}+\overrightarrow{M D}=4 \overrightarrow{M G}\)
B. \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{G D}\)
C. \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\)
D. \(\overline{G M}+\overrightarrow{G N}=\overrightarrow{0}\)
18/11/2021 1 Lượt xem
Câu 5: Cho tứ diện ABCD đều cạnh bằng a. Gọi M là trung điểm CD, \(\alpha\) là góc giữa AC và BM. Chọn khẳng định đúng?
A. \( \cos \alpha = \frac{{\sqrt 3 }}{4}\)
B. \( \cos \alpha = \frac{{\sqrt 3 }}{3}\)
C. \( \cos \alpha = \frac{{\sqrt 3 }}{6}\)
D. \(\alpha = 60^o\)
18/11/2021 1 Lượt xem
Câu 6: Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được cấp số cộng có 1001 số hạng. Tìm số hạng thứ 501.
A. 1009
B. \(\frac{{2019}}{2}\)
C. 1010
D. \(\frac{{2021}}{2}\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 638
- 1
- 30
-
81 người đang thi
- 628
- 0
- 30
-
96 người đang thi
- 629
- 0
- 30
-
38 người đang thi
- 545
- 0
- 30
-
58 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận