Câu hỏi:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại B. \(AB=a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt 2a\). Gọi E là trung điểm của \(AB\). Khoảng cách giữa đường thẳng \(SE\) và đường thẳng \(BC\) là
A. \(\frac{\sqrt3a}{3}\)
B. . \(\frac{a}{2}\)
C. \(\frac{\sqrt2a}{3}\)
D. \(\frac{\sqrt3a}{2}\)
Câu 1: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, cạnh bên \(SA \bot (ABCD)\) và \(SA=a\). Khoảng cách từ A đến mặt phẳng \((SBD)\) là
A. \(\frac{{a\ }}{2}\)
B. \(\frac{{a\sqrt 6 }}{3}\)
C. \(\frac{{a\sqrt 3 }}{3}\)
D. \(\frac{{a\sqrt 2}}{2}\)
05/11/2021 2 Lượt xem
Câu 2: Trong không gian \(Oxyz\), mặt cầu \((S): x^2+y^2+z^2-4x+4y+4=0\) có bán kính bằng
A. \(2\sqrt{3}\)
B. \(4\)
C. \(2\)
D. \(12\)
05/11/2021 2 Lượt xem
Câu 3: Họ nguyên hàm của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaada % WcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaa % ikdaaaGccaaIYaGaamiEaaaacaWGKbGaamiEaaWcbeqab0Gaey4kIi % paaaa!401E! \int {\frac{1}{{{{\cos }^2}2x}}dx} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaciGG0bGaaiyyaiaac6gacaaIYaGaamiEaiab % gUcaRiaadoeaaaa!3DAE! \frac{1}{2}\tan 2x + C\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaciGG0bGaaiyyaiaac6gacaaIYaGaamiEaiab % gUcaRiaadoeaaaa!3DAE! \frac{1}{2}\cot 2x + C\)
C. \(-\frac{1}{2}\cot 2x + C\)
D. \(-\frac{1}{2}\tan 2x + C\)
05/11/2021 3 Lượt xem
Câu 4: Cho số phức \(z=3-2i\). Điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiabg2 % da9iaadQhacqGHRaWkcaWGPbWaa0aaaeaacaWG6baaaaaa!3BD2! {\rm{w}} = z + i\overline z \) có tọa độ
A. \((1;1)\)
B. \((5;-5)\)
C. \((5;1)\)
D. \((1;-5)\)
05/11/2021 2 Lượt xem
Câu 5: Cho hàm số \(f(x)\) có bảng biến thiên như sau.
Số nghiệm của phương trình \(f(x)+1=0\) là


A. \(3\)
B. \(2\)
C. \(4\)
D. \(1\)
05/11/2021 2 Lượt xem
05/11/2021 2 Lượt xem

Câu hỏi trong đề: Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020 của Trường THPT chuyên Khoa Học Tự Nhiên
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 286
- 50
-
91 người đang thi
- 1.3K
- 122
- 50
-
27 người đang thi
- 1.1K
- 75
- 50
-
76 người đang thi
- 946
- 35
- 50
-
93 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận