Câu hỏi:

Cho hàm số \(f\left( x \right) = {x^3} + 3{x^2} - 2m + 1\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao cho \(\mathop {\max }\limits_{\left[ {1;3} \right]} \left| {f\left( x \right)} \right| + \mathop {\min }\limits_{\left[ {1;3} \right]} \left| {f\left( x \right)} \right| \ge 10\). Số các giá trị nguyên của S trong [-30;30] là

159 Lượt xem
05/11/2021
3.4 5 Đánh giá

A. 56

B. 61

C. 55

D. 57

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Cho hàm số \(f\left( x \right) = \sqrt {{{\log }_2}\left( {3x + 4} \right)} \). Tập hợp nào sau đây là tập xác định của f(x) là

A. \(D = \left( { - 1; + \infty } \right)\)

B. \(D = \left( { - \frac{4}{3}; + \infty } \right)\)

C. \(D = \left[ { - 1; + \infty } \right)\)

D. \(D = \left[ {1; + \infty } \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Cho \(I = \int {\frac{{{{\ln }^5}x}}{{2x}}dx} \). Giả sử đặt t = ln x. Khi đó ta có:

A. \(I = 2\int {{t^6}dt} \)

B. \(I = 2\int {{t^5}dt} \)

C. \(I = \frac{1}{2}\int {{t^6}dt} \)

D. \(I = \frac{1}{2}\int {{t^5}dt} \)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh