Câu hỏi:
Cho hai mặt phẳng (P) và (Q) , a là một đường thẳng nằm trên (P). Mệnh đề nào sau đây sai?
A. Nếu \(a / / b \text { với } b=(P) \cap(O) \text { thì a } / /(O)\)
B. Nếu \((P) \perp(Q) \text { thì } a \perp(Q)\)
C. \(Nếu \,a \text { cắt }(Q) \text { thì }(P) \text { cắt }(Q)\)
D. Nếu \((P) / /(Q) \text { thì } a / /(Q)\)
Câu 1: Cho cấp số cộng \(( u_n)\) thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính số hạng thứ 100 của cấp số cộng.
A. \(u_{100}=-243\)
B. \(u_{100}=-295\)
C. \(u_{100}=-231\)
D. \(u_{100}=-294\)
18/11/2021 1 Lượt xem
Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân có hai đường chéo AC, BD vuông góc với nhau, \(AD = 2a\sqrt 2 ;BC = a\sqrt 2 \). Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD). Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 60o. Khoảng cách từ M là trung điểm đoạn AB đến mặt phẳng (SCD) là
A. \(\frac{{a\sqrt {15} }}{2}\)
B. \(\frac{{a\sqrt {15} }}{{20}}\)
C. \(\frac{{3a\sqrt {15} }}{{20}}\)
D. \(\frac{{9a\sqrt {15} }}{{20}}\)
18/11/2021 2 Lượt xem
Câu 3: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{{x^2} - 1}}\) bằng:
A. \( - \infty \)
B. -1
C. 1
D. \( + \infty \)
18/11/2021 2 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 ;BC = 2a\). Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60o. Khoảng cách từ D đến (SBC) tính theo a bằng
A. \(\frac{{a\sqrt {15} }}{5}\)
B. \(\frac{{2a\sqrt {15} }}{5}\)
C. \(\frac{{4a\sqrt {15} }}{5}\)
D. \(\frac{{3a\sqrt {15} }}{5}\)
18/11/2021 1 Lượt xem
Câu 5: Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
18/11/2021 2 Lượt xem
Câu 6: Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là
A. \(\frac{{\sqrt {34} a}}{{51}}\)
B. \(\frac{{2\sqrt {34} a}}{{51}}\)
C. \(\frac{{3\sqrt {34} a}}{{51}}\)
D. \(\frac{{4\sqrt {34} a}}{{51}}\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phan Văn Trị
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 620
- 1
- 30
-
39 người đang thi
- 605
- 0
- 30
-
34 người đang thi
- 610
- 0
- 30
-
25 người đang thi
- 526
- 0
- 30
-
88 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận