Câu hỏi:
Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
A. \({u_n} = 2017n + 2018\)
B. \({u_n} = {\left( { - 1} \right)^n}{\left( {\frac{{2017}}{{2018}}} \right)^n}\)
C. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{{u_n}}}{{2018}},\,\,\,n = 1,\,2,\,3,\,... \end{array} \right.\)
D. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 2017{u_n} + 2018 \end{array} \right.\)
Câu 1: Cho tam giác ABC có diện tích S . Tìm giá trị của k thích hợp thỏa mãn: \(S=\frac{1}{2} \sqrt{\overline{A B}^{2} \cdot \overrightarrow{A C}^{2}-2 k(\overline{A B} \cdot \overrightarrow{A C})^{2}}\)
A. \(k=\frac{1}{4}\)
B. \(k=\frac{1}{2}\)
C. k = 0
D. k = 1
18/11/2021 1 Lượt xem
Câu 2: Cho hai vectơ \(\vec{a}, \vec{b}\) thỏa mãn: \(|\vec{a}|=4 ;|\vec{b}|=3 ; \vec{a} \cdot \vec{b}=10\) . Xét hai vectơ \(\bar{y}=\vec{a}-\vec{b}; \quad \vec{x}=\vec{a}-2 \vec{b}\) . Gọi α là góc giữa hai vectơ \(\vec{x}, \vec{y}\). Chọn khẳng định đúng?
A. \(\cos \alpha=\frac{-2}{\sqrt{15}}\)
B. \(\cos \alpha=\frac{1}{\sqrt{15}}\)
C. \(\cos \alpha=\frac{3}{\sqrt{15}}\)
D. \(\cos \alpha=\frac{2}{\sqrt{15}}\)
18/11/2021 1 Lượt xem
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD, DC. Gọi H là giao điểm của CN và DM, biết SH vuông góc (ABCD), \(SH = a\sqrt 3 \). Khoảng cách từ điểm C đến mặt phẳng (SBP) tính theo a bằng
A. \(\frac{{a\sqrt 2 }}{4}\)
B. \(\frac{{a\sqrt 3 }}{2}\)
C. \(\frac{{a\sqrt 3 }}{4}\)
D. \(\frac{{a\sqrt 2 }}{2}\)
18/11/2021 1 Lượt xem
Câu 4: Trong các dãy số sau, dãy nào là cấp số nhân?
A. \({u_n} = {\left( { - 1} \right)^n}n\)
B. \({u_n} = {n^2}\)
C. \({u_n} = {2^n}\)
D. \({u_n} = \frac{n}{{{3^n}}}\)
18/11/2021 2 Lượt xem
Câu 5: Cho sấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính tổng của 15 số hạng đầu của cấp số cộng.
A. \(S_{15}=-244\)
B. \(S_{15}=-274\)
C. \(S_{15}=-253\)
D. \(S_{15}=-285\)
18/11/2021 2 Lượt xem
Câu 6: Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
18/11/2021 2 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phan Văn Trị
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 557
- 1
- 30
-
42 người đang thi
- 558
- 0
- 30
-
56 người đang thi
- 558
- 0
- 30
-
21 người đang thi
- 467
- 0
- 30
-
98 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận