Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A (1; 2) và B (3; 4). Điểm P ( ; 0) (với là phân số tối giản, b > 0) trên trục hoành thỏa mãn tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. Tính S = a + b.
A. S = -2
B. S = 8
C. S = 7
D. S = 4
Câu 1: Tìm tất cả các giá trị mm để đường thẳng y = mx + 3 − 2m cắt parabol y = − 3x − 5 tại 2 điểm phân biệt có hoành độ trái dấu.
A. m < −3
B. −3 < m < 4
C. m < 4
D. m 4
30/11/2021 0 Lượt xem
Câu 2: Đồ thị hàm số y = x − 2m + 1 tạo với hệ trục tọa độ Oxy tam giác có diện tích bằng . Khi đó m bằng:
A. m = 2; m = 3.
B. m = 2; m = 4.
C. m = −2; m = 3.
D. m = −2.
30/11/2021 0 Lượt xem
Câu 3: Đường thẳng d: y = (m − 3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là:
A. 1
B. 0
C. 3
D. 2
30/11/2021 0 Lượt xem
Câu 4: Các đường thẳng y = −5(x + 1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a là
A. −13 hoặc 3
B. 13 hoặc −3
C. −12
D. −13
30/11/2021 0 Lượt xem
Câu 5: Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
A. 30 triệu đồng.
B. 29 triệu đồng.
C. 30,5 triệu đồng.
D. 29,5 triệu đồng
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
- 0 Lượt thi
- 50 Phút
- 12 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận