Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?
A. a + b + c = 12
B. a2 + b = c - 6
C. a + b + c = 18
D. a + b - c = 0
Câu 1: Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là: .
Cho ba điểm A, M, B nằm trên mặt cầu (S) sao cho góc AMB = . Diện tích tam giác AMB có giá trị lớn nhất bằng?
A. A. 4
B. 2
C. C. 4π
D. Không tồn tại.
30/11/2021 0 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z
A. A. P = 0
B. P = 2P = 0
C. P = 6
D. P = -2
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
Câu 4: Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).
A. A. arccos(4/15)
B. 1
C. arcsin(4/5)
D. arccos(4/5)
30/11/2021 0 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(0;0;-6), B(0;1;-8), C(1;2;-5) và D(4;3;8). Hỏi có tất cả bao nhiêu mặt phẳng cách đều bốn điểm đó?
A. Có vô số mặt phẳng.
B. 1 mặt phẳng.
C. 7 mặt phẳng.
D. 4 mặt phẳng.
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem

Câu hỏi trong đề: 200 câu trắc nghiệm Phương pháp tọa độ trong không gian nâng cao (P1)
- 0 Lượt thi
- 25 Phút
- 25 Câu hỏi
- Học sinh
Cùng danh mục Chương 3: Phương pháp tọa độ trong không gian
- 327
- 0
- 25
-
26 người đang thi
- 288
- 1
- 15
-
17 người đang thi
- 297
- 2
- 15
-
87 người đang thi
- 256
- 2
- 15
-
16 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận