Câu hỏi:
Trong không gian Oxyz, cho hai điểm A(1;0;-2), B(-1;1;1). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:
A. A. 2x - y - 3z - 8 = 0
B. B. x - 2z - 8 = 0
C. x - 2z - 8 = 0
D. 2x - y - 3z + 6 = 0
Câu 1: Trong các khẳng định dưới đây, khẳng định nào đúng?
A. A. Mỗi mặt phẳng chỉ có duy nhất một vectơ pháp tuyến
B. B. Mặt phẳng (P) hoàn toàn được xác định khi biết một điểm A thuộc (P) và biết một vectơ pháp tuyến của mặt phẳng (P)
C. C. Mặt phẳng (P) hoàn toàn được xác định khi biết một điểm A thuộc (P) và (P) vuông góc với một mặt phẳng (Q) cho trước
D. D. Mặt phẳng (P) hoàn toàn được xác định khi biết một điểm A thuộc (P) và (P) song song với một đường thẳng d cho trước
30/11/2021 0 Lượt xem
Câu 2: Trong không gian Oxyz, cho điểm A(2;-3;4). Lập phương trình mặt phẳng (P) đi qua các hình chiếu vuông góc của điểm A trên các trục tọa độ:
A. 2x-3y+4z-29=0
B. B. 2x-3y+4z-1=0
C.
D. D.
30/11/2021 0 Lượt xem
Câu 3: Trong không gian Oxyz, cho hai điểm A(1;3;5), B(-1;5;3). Lập phương trình mặt phẳng trung trực (P) của đoạn thẳng AB
A. A. x + y + z = 0
B. x + y - z = 0
C. x - y + z = 0
D. -x + y + z = 0
30/11/2021 0 Lượt xem
Câu 4: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình là x - 2y + 2 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P):
A.
B.
C. C.
D. D.
30/11/2021 0 Lượt xem
Câu 5: Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y - 2z + 1 = 0, (Q): 2x + 4y + az + b = 0. Tìm a và b sao cho khoảng cách giữa hai mặt phẳng đó bằng 1.
A. A. a = -4 và b = 8
B. B. a = -4 và b = 8 hoặc b = -4
C. a = -2 và b = 38 hoặc b = -34
D. a = -4 và b = 38 hoặc b = -34
30/11/2021 0 Lượt xem
Câu 6: Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;1 ;-3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz.
A. A. x + y - 3 = 0
B. x - y - 1 = 0
C. 2x + y - 3z - 1 = 0
D. x - y + 1 = 0
30/11/2021 0 Lượt xem

Câu hỏi trong đề: 66 câu trắc nghiệm: Phương trình mặt phẳng có đáp án (P1)
- 0 Lượt thi
- 40 Phút
- 31 Câu hỏi
- Học sinh
Cùng danh mục Chương 3: Phương pháp tọa độ trong không gian
- 319
- 0
- 25
-
21 người đang thi
- 280
- 1
- 15
-
85 người đang thi
- 288
- 2
- 15
-
25 người đang thi
- 246
- 2
- 15
-
10 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận