Câu hỏi:
Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + x + 1} - 2x} \right)\)
A. \( + \infty \)
B. \( - \infty \)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
18/11/2021 1 Lượt xem
Câu 2: Cho cấp số cộng \(( u_n)\) thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính số hạng thứ 100 của cấp số cộng.
A. \(u_{100}=-243\)
B. \(u_{100}=-295\)
C. \(u_{100}=-231\)
D. \(u_{100}=-294\)
18/11/2021 1 Lượt xem
Câu 3: Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
18/11/2021 2 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân có hai đường chéo AC, BD vuông góc với nhau, \(AD = 2a\sqrt 2 ;BC = a\sqrt 2 \). Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD). Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 60o. Khoảng cách từ M là trung điểm đoạn AB đến mặt phẳng (SCD) là
A. \(\frac{{a\sqrt {15} }}{2}\)
B. \(\frac{{a\sqrt {15} }}{{20}}\)
C. \(\frac{{3a\sqrt {15} }}{{20}}\)
D. \(\frac{{9a\sqrt {15} }}{{20}}\)
18/11/2021 2 Lượt xem
Câu 5: Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 0} \frac{{\cos \;2x - \cos \;3x}}{{x\left( {\sin \;3x\; - \sin \;4x\;} \right)}}\)
A. \( + \infty \)
B. \(- \infty \)
C. \(\frac{5}{2}\)
D. 0
18/11/2021 3 Lượt xem
Câu 6: Xét tính tăng giảm của các dãy số sau: \(\left\{\begin{array}{c} u_{1}=1 \\ u_{n+1}=\sqrt[3]{u_{n}^{3}+1}, n \geq 1 \end{array}\right.\)
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phan Văn Trị
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 625
- 1
- 30
-
21 người đang thi
- 616
- 0
- 30
-
74 người đang thi
- 618
- 0
- 30
-
36 người đang thi
- 533
- 0
- 30
-
50 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận