Câu hỏi:
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân, AB = AC = a, . Mặt phẳng (AB’C’) tạo với đáy góc . Tính khoảng cách từ đường thẳng BC đến mặt phẳng (AB’C’) theo a.
A. A.a/3
B.
C.
D.
Câu 1: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng AB và SN là:
A. A.
B. B.
C. C.
D.
30/11/2021 0 Lượt xem
Câu 2: Trong các mệnh đề sau, mệnh đề nào sai?
A. A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia.
B. B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mặt phẳng (P).
C. C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b.
D. D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia.
30/11/2021 0 Lượt xem
Câu 3: Cho tam giác ABC có AB = 14, BC = 10, AC = 16. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại A lấy điểm O sao cho OA = 8. Tính khoảng cách từ O đến đường thẳng BC.
A. A. 24
B. 16
C. C .
D.
30/11/2021 0 Lượt xem
Câu 4: Cho các khẳng định sau:
(1) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
(2) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(3) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(4) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
A. 1
B. 2
C. 3
D. 4
30/11/2021 0 Lượt xem
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).
A. A.
B.
C.
D.
30/11/2021 0 Lượt xem
Cùng danh mục Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian
- 266
- 0
- 22
-
78 người đang thi
- 268
- 1
- 10
-
33 người đang thi
- 251
- 0
- 15
-
22 người đang thi
- 304
- 0
- 15
-
92 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận