Câu hỏi:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝
Tan của góc giữa mặt bên và mặt đáy bằng:
A.
Câu 1: Cho hình lập phương ABCD.A’B’C’D’: Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
A. trung điểm của BD
B. trung điểm của A’B
C. trung điểm của A’D
D. tâm của tam giác BDA’
30/11/2021 0 Lượt xem
Câu 2: Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng . Gọi M và N lần lượt là trung điểm của AB và CD.
Mặt phẳng (BCD) vuông góc với mặt phẳng
A. (CDM)
B. (ACD)
C. (ABN)
D. (ABC)
30/11/2021 0 Lượt xem
Câu 3: Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.
DE bằng:
A. a√3
B. a√2
C.
D. a(1 + √3)
30/11/2021 0 Lượt xem
Câu 4: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
Khằng định nào sau đây đúng?
A. AB ⊥ (ACD).
B. BC ⊥ (ACD).
C. CD ⊥ (ABC).
D. AD ⊥ (BCD).
30/11/2021 0 Lượt xem
Câu 5: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Điểm cách đều bốn điểm A, B, C, D là:
A. trung điểm J của AB
B. trung điểm I của BC
C. trung điểm K của AD
D. trung điểm M của CD
30/11/2021 0 Lượt xem
Câu 6: Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
A. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD)
B. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD) nên SC⊥(AHK)
C. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC⊥(AHK)
D. AK ⊥(SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)
30/11/2021 0 Lượt xem
Câu hỏi trong đề: Trắc nghiệm Mặt phẳng vuông góc có đáp án
- 0 Lượt thi
- 40 Phút
- 14 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận