Câu hỏi:
Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA2 + MB2 nhỏ nhất.
A. M (0; 1)
B. M (0; −1)
C.
D.
Câu 1: Cho tam giác ABC có và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.
A. y + 1 = 0
B. y + 1 = 0
C. 4x − 3y + 1 = 0
D. 3x − 4y + 8 = 0
30/11/2021 0 Lượt xem
Câu 2: Trong mặt phẳng tọa độ Oxy, cho điểm M (4; 1), đường thẳng d qua M, d cắt tia Ox, Oy lần lượt tại A (a; 0), B (0; b) sao cho tam giác ABO (O là gốc tọa độ) có diện tích nhỏ nhất. Giá trị a − 4b bằng
A. -14
B. 0
C. 8
D. -2
30/11/2021 0 Lượt xem
Câu 3: Đường tròn đi qua A (2; 4), tiếp xúc với các trục tọa độ có phương trình là
A. ,
B. ,
C. ,
D. ,
30/11/2021 0 Lượt xem
Câu 4: Cho hai điểm P (1; 6) và Q (−3; −4) và đường thẳng Δ: 2x – y – 1 = 0. Tọa độ điểm N thuộc Δ sao cho |NP − NQ| lớn nhất
A. N (3; 5).
B. N (1; 1).
C. N (−1; −3).
D. N (−9; −19).
30/11/2021 0 Lượt xem
30/11/2021 0 Lượt xem
Câu 6: Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết AD = 2AB, đường thẳng AC có phương trình x + 2y + 2 = 0, D (1; 1) và A (a; b) (a, b ∈ R, a > 0). Tính a + b
A. a + b = −4
B. a + b = −3
C. a + b = 4
D. a + b = 1
30/11/2021 0 Lượt xem
Câu hỏi trong đề: Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án
- 0 Lượt thi
- 15 Phút
- 15 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận