Câu hỏi:
Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA2 + MB2 nhỏ nhất.
A. M (0; 1)
B. M (0; −1)
C.
D.
Câu 1: Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x − 2y – 5 = 0 và các điểm A (1; 2), B (−2; 3), C (−2; 1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: nhỏ nhất
A. x + y = 0
B. x − 3y = 0
C. 2x − 3y = 0
D. 2x + y = 0
30/11/2021 0 Lượt xem
Câu 2: Cho tam giác ABC có diện tích bằng , hai đỉnh A (2; −3) và B (3; −2). Trọng tâm G nằm trên đường thẳng 3x – y – 8 = 0. Tìm tọa độ đỉnh C?
A. C (−10; −2) hoặc C (1; −1)
B. C (−2; −10) hoặc C (1; −1)
C. C (−2; 10) hoặc C (1; −1)
D. C (2; −10) hoặc C (1; −1)
30/11/2021 0 Lượt xem
Câu 3: Cho hai điểm P (1; 6) và Q (−3; −4) và đường thẳng Δ: 2x – y – 1 = 0. Tọa độ điểm N thuộc Δ sao cho |NP − NQ| lớn nhất
A. N (3; 5).
B. N (1; 1).
C. N (−1; −3).
D. N (−9; −19).
30/11/2021 0 Lượt xem
Câu 4: Đường thẳng nào dưới đây tiếp xúc với đường tròn (x − 2)2 + y2 = 4, tại M có hoành độ xM = 3?
A.
B.
C.
D.
30/11/2021 0 Lượt xem
Câu 5: Cho tam giác ABC nội tiếp đường tròn tâm I (2; 1), trọng tâm , phương trình đường thẳng AB: x – y + 1 = 0. Giả sử điểm C (x0; y0), tính 2x0 + y0
A. 18
B. 10
C. 9
D. 12
30/11/2021 0 Lượt xem
Câu 6: Cho đường tròn (C): x2 + y2 − 2x + 2y – 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2
A. x + y + 4 = 0 và x + y – 4 =0
B. x + y + 2 = 0
C. x + y + 4 = 0
D. x + y + 2 = 0 và x + y – 2 = 0
30/11/2021 0 Lượt xem
Câu hỏi trong đề: Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án
- 0 Lượt thi
- 15 Phút
- 15 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận